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\Page 7, (eq, (11)): The right sides of the equations for coefficients
I. and N should be preceded by minus signs.

o 5 LI GENETrEl, D€ CONSTUSYEY On an ordinary two-
dimensional basls. Annulsr area reductions of the order of two to one 3
or of higher orders, may occur, making it necessary to include the
effect of radial veriation in stream-filament height and curvature in
the meridional plane in a blade-to-blade solution. It appears feasible
to obtain a more complete analysis of the impeller flow by a reitera-
tive calculation procedure along two different types of relative flow
surfaces. A description of the two flow surfaces, called S7 (a blade-
to-blade type of surface) and S (a meridional type of surface), and
the equations for calculating the supersonic flow on both kinds of sur-
faces can be found in reference 1.
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As a first approximetion to the complete flow description, the
stream-filament-thickness variation to be used in the calculation of
the S3 surface of revolution may be determined by an axisymmetric
solution in the meridional plane. A method for such an axisymmetric
solution is described and worked out in detail with examples in refer-
ence 2. A solution of this type gives the flow variations along the
blade span; however, the blade-to-blade solution must be approximated
from the axisymmetric supersonic solution, blade circulation, and con-
tinuity. A total of 160 hours of hand computing is required for
100 grid points in the meridional plane. A solution of the type of ref-
erence 2 1s necessary to give the stream-sheet thickness and curvature
for the blade-to-blade (Sl surface) solution considered in this report.
The equations for the solution of the S5 surface of revolution are

presented in reference 3.

The purpose of the subject report is to continue the work of ref-
erence 3 by applying the method to a specific problem in order that the
practicability of the method and the time involved in computing a solu-
tion may be determined. The calculation procedure used in the applica-
tion of the method is outlined in detail.

Once this blade-to-blade solution is obtained, a finer approxima-
tion to the flow may be obtained by computing the flow on several Sg
surfaces and by then repeating the computation on S; surfaces which
are no longer surfaces of revolution as described in reference 1.

The tip stream filament of & constant-tip-diameter supersonic
impeller was chosen for illustrating the numerical technique inasmuch
as it was originally proposed to separate the stream-filament-thickness
effect from the stream-curvature effect. For §S3; surfaces of revolu-
tion other than the tilp, the calculation time reguired will be increased
slightly over the 1/2 hour per grid point estimated here, since, for
this case, it is necessary to include stream-filament slope terms. It
is felt that the additional calculating time required will not be
excessive.

For completeness, the equations given in reference 3 have been
derived from & different approach for a fluid with negligible entropy
change and a constant-modified-relative stagnation enthalpy. The equa-
tions are given in finite difference form for the general surface of
revolution, and the computing procedure 1s detalled for the case where
the surface-of-revolution curvature is neglected.

2935
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SYMBOLS

The following symbols are used in this report:

A area normel to flow

Ay critical area (at M = 1)
a Jocal speed of sound

h static enthalpy

J,L,N coefficlents in characteristic equations

K constant

1,9 orthogonal coordinstes on mean surface of revolution
M local Mach nﬁmber

n unit vector normsl to surface of revolution

P total pressure

P static pressure

T radial distance from axis of machine (fig. 1)

T thickness parameter

v absolute velocity

W relative velocilty

pA distance measured along axis of machine (fig. 1)
B relative flow angle, tan—1 uw/wl

¥  ratio of specific heats, 1.4

5 flow angle correction term, equation (B2)

€ Prandtl angle correction term, equation (B1)

first characteristic family

A slope of characteristic curve on mean surface of revolution
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" Mach angle, sin™t 1/M

v Prandtl-Meyer angle

£ second characteristic family

p mass density

o) slope of mean surface of revolution in meridional plane, 19
tan™t W AW, o

T normal thickness of stream filament of revolution

¥ stream function

® angular velocity of blade

Subscripts:

a stagnation conditions

1 inlet )

1,9 meridional end circumferential components

r,2 components in r- and z-directions, respectively

t tip

1,2,3 ©points of characteristic net

o] two-dimensional solution

+y- characteristic slope of lst and 2nd characteristics

Superscripts:

]

dimensionless values, lengths are normslized by the tip radius
and velocity by the stagnation speed of sound

vector velocity

DEVELOPMENT OF GENERAL EQUATTONS

The flow equations for supersonic flow on & general surface of
revolution with variable stream-filament thickness T = T(1) (see fig. 1)
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can be developed from the equation of continuity and the absolute vor-
tlcity normal to the surface of revolution.

For steady flow the continuity equation becomes:

A(ToW.r) O(TpeW
T e -0 @

If the flow is isentropic such that

L
P = KhY-l

the continuity equation may be written as:

1 L
a<TW1rhY'l> a(rw hr-l>
+ ) =0 (2)

31 QP -

Assuming that the absolute vorticity of the flow field is zero, then
VX V=Evx(+oXT)EVXW+20=0 (3)

The equation for the vorticity that involves the velocitles W; and W¢

on the surface of revolution is needed to combine with the continuity
equetion. The vorticity normal to the surface of revolution is a func-
tion of these surface velocities. The vorticity normal to the surface of
revolution in vector notation is

T . XW+20) =0

This relation, when expended in terms of Wcp and Wz using the method
of reference 4 (p. 210, eq. 9), is

OW. OV, W,
.];__l_'_ip_(_g+2m)sin0'=0 (4)

For convenience it is desireble to express the continuity and vorticity
equations in terms of the relative velocity W and the flow angle PB:

WZ =W cos B
Wq)z Wsin 8




NACA TN 2992

Differentiating equations (2) and (4) and substituting the relations
for the velocity components, the following equations result where

h=.§'.2_.:
T-1
cot W  ten B coty oW OB OB
st W s el M. T R
rsincg, sino d1lnT)_ (5)
( r 222+ S ) 0
and
tan B OW _ 1L W . 3B 38 1 (ﬁ sin B _
5 Ao T or TP It e\ T ) e o=0

(6)

Applying the method of characteristics to equations {5) and (6)
according to reference 5 (pp. 38-45), two families of characteristic
lines are obtained. The two types of characteristic lines will be -
denoted by the characteristic parameters 17 and £, where 1 varies
along a {-constant-characteristic line and § varies along an 1~
constant-characteristic line. The characteristic equations become:

1 BW_BB_tan \;1)rsin0 dln T, A_ sin o cos B
W tan p OF  OFf l_ al ot . r(A_ cos B-sin B)
1 N cos B-L sin B ol
J (A cos B-sin B)} -a_g =0 (7)

where the slope of the n-constant-characteristic line is

A= E¥ = ten (B 4 w) (8)

Similarly, along a £ -constent-characteristic line:

A
1 a—w+§£-ta.nu[m2rsmc+alnT+ , 8in o cos B

W tan p On 97 a2 d1 r(A, cos B-sin B)

1N cos B-L sin B o _ 0 (9)
J (A, cos B-sin B) | On

2935
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and the £-constant-characteristic line slope is

A =E8% o ten (g - W) ¢10)

- These characteristic lines are shown in figure 2.

The coefficients J, L, and N on characteristic equations (7) and
(9) are:

J = l-COSZB A
sin p
L= Q)zr+w—————2c°szﬂ>sinc+azaln7 (1)
.-_'a,2 r o1 f
_ _ 1 W sin B sin o
N_<l sinzu)[( d +&9W°°SB]J

Characteristic equations (7) and (9) are the same as equations (12a)
and (lZ‘b) of reference 3 for a flow with uniform I and negligible entropy
change, vhere I is the modified-relative stagnation enthalpy defined by

A solution of the flow field is obtained by replacing the characdter-
i1stic differential equations with a series of difference equations which
are solved In a step-by-step procedure. Assume two characteristics
emenating from points 1 and 2 and intersecting at point 3 as shown in
figure 2 where the flow properties are known, one of them, 7, with a
slope equal to tan(B+u); and the other, £, having a slope tan(B-u),.
The coordinates 1z, Pz defining point 3 are determined from equa-

tions (8) and (10). Thus
rl(cps-cpl) = }\+l(7,3—7,l) {n constant)

(12)
rz(qns-cpz) = A_Z(ZS-ZZ) (¢ constant)

Atter point 3 is established from equations (12), Wz and Bz are deter-

mined from the simultaneous solution of the characteristic equations. In
finite difference form, equation (7) along 7 and equation (9) along ¢
are
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r sin o + Odln T +
- ol

1 mz
m (Ws-W]_) - (33—31) - tan pq

A- s8in o cos B
r(A_. cos B-sin B)

1l N cos B~L sin B

+3F (\_ cos B-sin B)

i](ZS'Zl) = 0 (n constant)
1

(13)

2935

1 wfr sino , 31n T

Ay 8in 0 cos B +‘£ N cos B-L sin B
r(Ay cos B-sin B) = J (A, cos B-sin B)

]2(23-12) = 0 (f constant)

(14)

For the case where a characteristic intersects a boundary rather than
another characteristic as shown in figure 2, only one characteristic
equation is needed, because elther Wz or Pz will be known at the

intersection point. In the case of an inverse problem either the veloc-
ity or blade turning is specified on the blade surflace, and in a direct
problem the blade angle is known at the point of Intersection.

The computational procedure to determine the properties and loca-
tion of point 3 involves an iteration process. The initlal solution at
point 3 is determined with the coefficients of (P3-® 2), (13-13 2),

(W5-Wy 2), end (B3-B1,2) Dased on the values at points 1 and 2. In

succeeding approximations to the values at 3,. the coefficients based on
the preceding values at point 3 are determined and averaged with the
coefficlents at 1 and 2, so that after the first epproximation to 3, all
coefficients subscripted 1 and 2 are coefficients averaged between 1 and
3 and between 2 and 3. The calculation procedure for the values at 3 is
repeated until the solution at point 3 converges within the accuracy
desired and the process is carried downstream step by step.

CHARACTERISTIC EQUATIONS FOR TIP STREAM FILAMENT

In this report the generel characteristics method described has been
simplified for application to the tip section of a comnstant-tip-
diameter supersonic compressor. The numerical enalysis takes into
account a variable stream-filament thickness but ignores the effect of
stream-filament curvature in the meridional plane since this effect will
be small at the specified tip section. In the case of a tip stream
filament the following conditions hold:
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1=z \
= ’ r = ry = constant
> (15)
T = T(z)
o= 0° . J

When these conditions are applied to characteristic equations (7) and

Ge62

(9), the characteristic equations for the tip section become:
1 % LcotBptanpdln T (16)
W ten p Of ~ Of * tam p-cot B~ OF
1 oW + B cotBtanpodin T -0 (17)
N W tan p O © On ~ tan ptcot B On
V<d
o

and from equations (8) and (10) their corresponding slope equations
become:

>

ri@z;) = Aq(2z-2z7) (1 constant)

T

(18)
ri@z-0) = A_5(zz-23) (£ constant)

If it is noted that the first term in equations (16) and (17) is
the Prandtl-Meyer angle d4v, the characteristic equatlions become the
usual plane-flow characteristic equations (two-dimensional solution)
plus a correction term for stream-filament thickness as seen from the
following equations:

oB L cot B tan u dlnT

' St~ St * Temmost s o = O (29)

OV . OB cotBtanpdln T
30 T 3n ~ %Ten ptcot B on =0 (20)

The plane-flow characteristic equations are simply

ov BB=
3t~ 3f 0 (21)
.gln’+§%=o (22)

The analysis of the flow at the impeller tip was carried out using
equations (19) and (20) together with the Ames tables (ref. 6).
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ILIUSTRATIVE EXAMPLE

The characteristics method outlined in the preceding sections for
solving the supersonic flow equations has been applied at the tip of a
constant-tip~-diameter supersonic impeller to determine the blade-to-
blade flow properties. The blade shape at the tip is shown in figure 3.
An estimated boundary-layer-thickness correction has been added to the
blade profile varying linearly along the axial blade length from zero at
the leading edge to 10 percent of the pitch distence at the exit. The
actual profile is shown by the dotted line in figure 3. The stream-
filament-thickness variation from inlet to exit is assumed to be the
result of a solution as described in reference 2. This varlation at the
tlp section is shown in figure 4, where it 1s noted that the thickness
is reduced at the exit to 40 percent of the value at the inlet. In the
example, this is the axial-stream-filament-thickness variation that is
applied at the constant tip diameter (thickness remains constant tangen-
tially); hence the stream-sheet curvature in the meridional plane was
neglected. The quantities known at the leading edge were inlet angle
By, -67-4°; inlet-flow deflection angle, 7°; suction-surface direction,
-663405 inlet-Mach number M;, 1.6563; inlet-stream-filament thickness
1{, 0.05; relative velocity W{; 1.3308; pitch distance, 0.2167; and the
axial-chord length, 0.625. Dimensionless quantlities are denoted with an
asterisk.

2935

Speclal procedures not discussed previously were required in some
phases of the numerical analysis because of the nature of the inlet con-
ditions prescribed in the example and because of the leading-edge shock
wave interaction with the characteristic lines. These phases of the
calculations and the determination of the characteristic blade-to-blade
solution will be discussed in the following sections.

Entrance region. - The solution of the flow equations by the method
of characteristics assumes that the boundary conditions are known on an
initial curve, in this case an inlet line, along which a series of
points, such as 1 and 2 in figure 2, are selected from which to initiate
the characteristics solution. In establishing this line, it is neces-
sery first to investigate the properties in the inlet region of those
characteristic curves which are known as expansion waves. In accordance
with the coordinate system selected for thls example, these curves are
characteristic lines of constant £ where A_ is tan (B-u). When the
absolute value of the wave angle, P-u, is less than 90° so that the
expansion waves from the leading edge are contained within the blade
passage as shown by the dashed line in figure 5, the inlet conditions as
prescribed prevail up to the blade leading edge. For such a case the
characteristic solution is started by selecting a series of grid points
along AB +where the flow is known and applying the iteration process
described earlier at points 1 and 2 for the solution at 3. The proce-
dure is possible since, in addition to the initial conditions along the
characteristic line, the flow direction on the two blade surfaces is
known.
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However, with inlet conditlons of the magnitude selected for this
example, it was found that the absolute value of the wave angle, B-u,
at the leading edge was greater than 90° and the waves fell outside the
blade paessages. This type of wave system and the one described previ-
ously are characterized by the magnitude of the axial component of
velocity. If the axial velocity component is supersonic, the waves will
be contained within the blade passage, and if the axial component is
subsonic, the waves fall upstream of the blade passage. For the latter
condition where the flow upstream of each blade is influenced by the
waves issuing.from the neighboring blede, the usual prescription of
uniform-flow conditions at the entrance to the blade passage can no
longer be made and it becomes necessary to study the flow conditions in
this region further.

In order to establish uniform-flow conditions at infinity upstream
of the blade row for steady-state flow, it is necessary that no disturb-
ance exist at infinity. Any wave system that is present in front of
the blades must originate from the blades themselves in such a manner
that the expanslon waves produced are cancelled by the formation.of equal
compression waves. Since only one family of waves, f-constant.
characteristic famlly, extends upstream, a simple wave system will sat-
isfy uniform-flow conditions at infinity.

For plene flow, the condition for a simple wave is merely v = v(f),
B = B(t), which satisfies equation (22) and equation (21) with the solu-
tion V- equael to a constant. This method cannot be used with equa-
tions (19) and (20) because V = V(t), p = B(t) gives with equation (20)
that O7dn = 0, which is not satisfied. The characteristic equa-
tions (19) and (20) become somewhat simpler to study in terms of W sin B
and &« parameter

L
v-1
T = Th W cos B

When these variables are introduced, equations (19) and (20) become

1 3(W sin B) , d(1ln T)

TosBtanpy S 9 =°© (23)
1 O(W sin B) d(in T)

Wcos B tan pu on B an 0 (24)

In this case the condition W sin B = Y(£), T = T(E) does not
violate equation (24) but satisfies it identically; however, equa-
tion (23) ie not satisfied in general because 1/W cos p tan yu 1is a
funétion of Y, T, and T, and T 1is a function of £ and 7. Differ-
entiation of equation (23) with 7(Y = Y(£), T = T(¢)), gives the result
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oY 9o 1 oT o
SEST\W cos B tan p/on

Thus there is the solution Y equal a constant, and hence from equa-
tion (23) T 41s also a constant.

For the example considered 1n this report, these conditlons were
not used and the actual flow was approximeted by setting ¥ = Y(¢),
T = T(¢) and integrating equation (19). It is estimmted that the meaxi-
mum error involved in V-B 1is less than 0.07° when the approximate
value of the coefficient of d(ln T) is used in equation (19). Equa-
tion (20) 1s satisfied exactly. The result of the integration is that
V- is some function of thickness T, so that at the line AC (fig. 6)
the quantity V-B is a constant (T is constant) which fulfills the
condition for a simple wave system upstream of the blades.

An exact and detaliled analysis of the flow at the entrance region
ABC was not included in the original scope of this report. The results
of the flow computations to be presented are principally concerned with
the flow downstream of characteristic AB; however, to determine the
natyre of the waves in the entrance region, rough calculations approxi-
mating the flow were made assuming the coefficients in the characteristic
equations to be proportioned linearly along CB from the value at C
to the value at B (fig. 6). At the blade leading edge, the inlet-flow
direction was -67.4° and the suction-surface direction -66.4° so that
there is a 1° expansion wave at the leading edge. A schematic sketch
" (fig. 6) shows the indications of the numerical results which are given
in table I. The primed letters on figure 6 indicate points on the blade
surface along corresponding characteristics. These results show that
compressions as well as expansion are propageted upstream from AC even
‘though expansion waves are generated from surface CB because of veloc-
ity changes along the characteristics. (These changes would be absent
in plane flow.) The calculations further indicate 1little change in
velaocity and flow angle at the entrance to the blade passage so that
assuming W and B constant along AC would have been a suitable
asgumption in this case.

If a detalled analysis of the entrance region flow is not required,
the flow properties mey be determined by & method similar to the one
described in the following section for obtaining the first inlet char-
acteristic line AB contained within the passage. The fact has been
utilized that W sin B equal to a constant along & f-constant charac-
teristic gives a simple wave system upstream of the blade row where T
is considered. Since it has been assumed that W sin B 1is constant,
equations {23) and (24) show that T is also a constant.

2935
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Now with W sin B and T constant, the first expansion wave AB
can be obtained by & simple graphical trial-and-error method. The rel-
ative velocity W* is fixed and a trial value for P selected at A.
By the procedure shown in appendix A, line AB 1is solved piecewise,
that is, from A to D, D to E, and so forth, establishing W* and
B at each point. The value of B determined at B must agree with
the value of the blade direction at B. The calculation is repeated
from A to B until the value selected for B at A gives in the
graphical solution the same B at B as given by the blade direction
at that point- In this manner the inlet characteristic line (expansion
wave) of figure 7 was obtained. The length of the segments AD, DE, and
80 forth establishes the slze of the subsequent characteristic network
since W* and P are determined at these points for beginning the
characteristic solution.

A Mach number of 1.6563 was prescribed at A in this example,
fixing the relative velocity at 1.3308. An inlet angie of about -65°
was desired; after the trial-and-error solution, an inlet angle of -67.4°
at the leading edge was found to give the ‘0rrect inlet expansion wave.

Characteristic solution blade-to-blade - The flow properties in
the blade passage were determined using the “inite difference form of
characteristic equations (19) and (20) as shiwn in appendix B. The
resultant characteristic network of approxima -ely 100 grid points, where
the flow properties were determined, is shown in figure 7.

The iterative procedure described earlier . ased upon averaged coef-
ficients in the characteristic equations required from one to four iter-
ations (usually two) to converge the relative velocity within one in the
fourth decimal and the flow angle within one in the first decimal. The
numerical setup used in the solution, together with a sample calcula-
tion, is shown in table IV.

Table II gives a comparlison between the first and last iterations
of the characteristic equations (19) and (20) for four of the grid
points indicated in figure 7.

A calculation based upon continuity was carried out at the inlet
and exit to determine what the magnitude of the relative velocity would
be at the exit if the stream-filament-thickness reduction had not been
taken into account as in a two-dimensional characteristic solution. It
was found that the velocity W* at the exit would be approximately
1.71 as compared with ebout 1.33 (see fig. 10) if the stream-filament-
thickness effects were included. At each grid point the characteristic
solution, compared with the plane-flow characteristics solution, indi-
cated a reduction in relative velocity and absolute value of the flow
angle when the stream-filament thickness was included in the character-
istiec equations.
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Shock wave. - The presence of the blade in & supersonic stream
produces a shock wave at the blade leading edge. In this example the
shock wave is caused by the 7° deflection required of the flow in turn-
ing from the inlet angle of -67.4° to the pressure surface direction of
-60.4° at the inlet.

Across the shock wave, the variation in the properties themselves
no longer can be considered infinitesimal and continuous as reguired in
the application.of the characteristic equations; consequently, it is
necessary to consider what happens when the shock wave crosses a char-
acteristic line. Figure 8 illustrates a typical case where a shock wave
from the leading edge intersects a characteristic line. The calculation
of the flow properties for this situation is treated as follows: by
ignoring the existence of the shock wave, an ordinary characteristic
solution is carried out for point 3 (fig. 8). The intersection point
between the shock wave and the f-characteristic line is then determined,
and a linear interpolation is mede between 2 and 3 for the flow proper-
ties at c¢. Knowledge of the flow properties shead of the shock and the
fact that the .shock wave is a 7° compression wave permit the calculation .
of the flow behind the shock at point b <from the general shock rela-
tions; the flow can also be determined from reference 7, as was done in
this example. The values at b are used to continue the next charac-
teristic point solution. Point 3 is needed only to interpolate for the
values at ¢ and no longer appears in the characteristic network.

2935

It has been assumed in the calculations that the angle change (7°)
is constant through the shock from the leading edge until it reaches
the suction surface of the preceding blade. For a weak shock the flow
deflection through the shock is independent of waves of the opposite
family, so that a shock wave through a field of varying stream-filament
thickness 1s also of constant deflection unless it is intersected by
waves of the same family. As shown in figure 7, the leading-edge shock
wave (heavy line) is not intersected by waves of the same family; there-
fore, the calculations assuming a constant deflection are computationally
consistent. However, if a finer grid bhad been used, the shock would
have coelesced with waves of the same family and an adjustment of the
flow deflection would have been necessitated. This situation occurred
wlth the reflection of the shock wave from the suction surface where it
18 shown in figure 7 to coalesce with expansion waves from the suction
surface. The reflected shock wave was weakened from a 7° to a 2°
deflection by the expansions from the suction surface.

Streamlines. - A stream function +V which satisfies the contin-
uity equation (1) may be defined as follows:

%%§= TTPW cos B (25) i
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glg:= -TPW sin B (26)

The streamlines shown in figure 9 were determined by integrating the
stream function (eqs. (25) and (26)) along a characteristic line extend-
ing across the blade passage. Thus,

% z3
oo [Tty [Erde @

RESULTS AND DISCUSSION

For a subsonic-axial-velocity component at the inlet to the blade,
the family of waves travellng upstream must be defined by a simple wave
system in order to establish uniform-flow conditions- gt: Infinity. In -
this example the #-constant-characteristic family extends upstream, and
a simple wave system in this region where T 1s a constant is defined
by V-B equal to a constant. Also, if the curvature terms in the char-
acteristic equations are neglected, W sin B equal to a constant along a
f-constant characteristic approximates a simple wave system in the
entrance region.

The characteristic solution shows a reduction in the absolute value
of the flow angle and relative velocity in the blade passage from the
two-dimenslonal characteristic solution when a stream-filament-thickness
reduction from blade entrance to exit is considered in the character-
istic equations. This result would be expected in supersonic flow since
a flow-area reduction produces & decrease in velocity. The flow prop-
erties obtained from the last iteration using equations (19) and (20)
and the first iteration calculation check well, indicating that one
iteration calculation may be sufficient. It is estimated that a solu-
tion neglecting stream-filament curvature terms obtained with equa-
tions (19) and (20), which is facilitated by using the Ames tables
(ref. 6), would require 1/2 hour of experienced computing time to con-
verge a characteristic point.

The streamlines determined are presented in figure 9. As would be
expected for supersonic flow, the streamline spacing increases from
pressure to suction surface. On the pressure surface are given the
maximum y-values divided by Vy-maximum at the inlet; these values are
determined by integrating along E-constant-characteristic lines. These
values show that continuity in the passage checked within *2 percent.
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Figure 10 shows the velocity distribution obteined on the blade
surfaces. The abrupt decrease in velocity on the suction surface at
z & 0.25 1s caused by the impingement of the leading edge shock wave on
the suction surface at this point. The shock wave, noticeably decreased
in strength, is reflected to the pressure surface at 2z = 0.505 where a
lesser decrease in relative surface velocity occurs. The arithmetical
mean velocity shown by the dashed line is approximately the same at inlet
and exit, an indication that the area normal to the flow is the same at
entrance and exit.

2935

The locel static to relative upstream total pressure ratio on the
blade surfaces is shown in figure 11. The sharp rise in pressure at
z 8 0.25 and z ® 0.505 is caused by the shock wave. The average
pressure shown by the dashed line gives an indication of the type of
pressure distribution that may be expected from pressure measurements
at the impeller outer wall.

No simplified method of correcting for the stream-filement thick-
ness could be found due to the interdependence of B and W 1n the
characteristic equations. The thickness correction as 1t is used here
is applicable to thin sheets, since the thickness effect is actually
propageted along characteristic lines in the meridional plane. The
result is a translation downstream of the thickness effect from the
axial station where the thickness actually existed. For thin sheets the
translation is negligible. It may be desirable to reiterate the solu-
tion with a new stream-filament-thickness distribution based upon the
most recent velocity distribution. For the solutions suggested here to
determine T% other fluid effects such as vorticity end secondary flows
wlll cause the actual flow to deviate from the hypothetical flow; hence,
any gain by further refinements in 7* may be masked by the other fluid
properties which have been neglected in the solution.

CONCLUDING REMARKS

The method of characteristics has been used to solve the supersonic
Tlow equations; this method gives the blade-to-blade flow properties
along an arbitrary stream surface of revolution where the meridional
thickness associated with the surface of revolution is determined by an
axisymmetric solution.

The results indicate an appreciable difference between the flow
properties calculated with the two-dimensional characteristic equations,
considering ordinaxry two-dimensional flow, and those determined with the
characteristics method demonstrated here. For this particular example
the effect of the stream-filament reduction between the blade-passage
entrance and exit was to reduce the relative velocity and the absolute .
value of the flow angle. In the entrance region 1t is shown that
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expansion waves propagated along characteristics become compression
waves because of the stream-filament-thickness variation. This effect
of the stream fllament will result in an lnlet-angle change upstream
from thet determined for two-dimensionsl flow.

Expressing the characteristic equations in terms of the Prandtl-
Meyer varisble VvV enables the Ames tables to be utilized in the com-
putation procedure. The solution indicates that first iteration cal-
culations gave flow properties of sufficient accuracy. Each grid point
takes epproximately 1/2 hour to calculate, depending upon the number of
lterations required.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Chio, April 17, 1953
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APPENDIX A

INTET CHARACTERISTIC CALCULATION

The following conditions were prescribed at the leading edge point,
5,0 (fig. 7), for the calculation of the inlet characteristic:

M5 o = 1.6563

1.3308

u

*x
V5,0
*
TS,O = 0-05
o]
BS,O = -67-4:

where z§ o= 0.00, r§ o= 1.0, and Qg5 o= 0.2167. The value for Bg g

was found to glve the correct B at the characteristic-line inter-
section, 0,0, on the suction surface after & series of solutions similar
to that shown below. Along this inlet characteristic,

T* = constant = (T**W* cos B)5 o = 0-008568

where p* = -&, and
Pa

(W* sin B)S,O = constant = -1.2286

With T*/T* and (W* sin B)° as parameters, a straight-line equa-
tion can be developed from which the inlet characteristic curve, and
flow properties may be determined. Let

T¥1*=d = p*W™* cos B (A1)
and upon substitution of

Aly
p*W* = 0.578688 %

into equation (Al), it becomes

*
Ao
d= @.578688 AT) cos B (a2)

SELY
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If
\\ e = W* sin B (A3)
the substitution of equations (A2) and (A3) into

1 = cos®f + sin®g

results in the following relation:
2/q2
1 _ 1 _effa" (a4)

AZ} 2 d? W*Z
0.578688 T

Equation (A4) ig the equation for a straight line as shown in fig-
ure 12 with an ordlnate intercept equal to l/dz and a negative slope

of e2/3%. Another relation between = +— end w*2  can be
(9.578688 %%5)

determined from the energy relation. This relation is

1 1 1 %2 -
T-1 %
A* 2 W*Z (} -T2 ) (45)
cr
(?.578688 K1_>

The nature of equation (AS5) is also shown in figure 12. The intersec-
tion of the curve representing equation (A5) with the straight line
glves the value of the relative velocity. Stralght lines in agreement
with the inlet boundary conditions are calculated for a series of
gelected grid points. Once the velocity is determined from a plot sim-
ilar to figure 12, the flow angle can be calculated from equation (A3).

The final inlet characteristic calculation is shown in table III.
Grid points were selected at approximately five equal intervals as
shown in figure 7.
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APPENDIX B

CHARACTERISTIC CAICULATION IN BLADE PASSAGE
Characteristic Equations (19) and (20)

The variables VY and B in characteristic equations (19) and
(20) can be expressed as a two-dimensional V and B plus & correction
term. Ilet

V=V +€ (B1)
B=py+Dd (B2)
Then equations (19) and (20) may be written as:
d(v +€) - a(Bo+d) + G d(1n T*) =0 (1 constant) (B3)
a(vo+e) + d(By+d) - F d(1n ™% =0 (¢ constant) (B4)

where F and G are the coefficients of the thickness term in equa-
tions (19) and (20). Since for the two-dimensional characteristics

av, - d8, = 0 (n constent)

0 (¢ constant)

dvo + d,BO

equations (B3) and (B4) when integrated along the characteristic curve
become:

3
€3 - 83 +f G d(In ™) = 0 ( constant) (B5)
1

3
63+63-f F d(1n 7%
2

For trapezoidal integration between characteristic points 1 and 3 and
points 2 and 3 and for averaged coefficients F and G, the resulting

correction terms are:

0 (¢ constant) (B6)

* * *
F(ln 7% - In T3) - G(InTY - 1n'r":‘L)

2935
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* * *
F(]_n'rs-]_n'rz)+G(].n'rs-ln1’]°‘_)

3= 2

® (B8)

When the two-dimensional solution calculated in equations (B9) to (B1l2)
is utilized, €z &and ®z at point 4,3 can be calculated as shown in

table IV. This procedure is representative of the type of solution
required for characteristic equations (19) and (20).

Plane-Flow Characteristic Equations (21) and (22)

Y

(v; - vz) - (By ~ Bs) = O (n constant) (B9)

w, - vz) + (By - Bg) = 0 (£ constant) (B10)

Solving for 1% and 55,

(v + ) + (By - Bq)

'Ds 5

(B11)

- (B1 + B2) - (v - vp)

Calculations at grid point 4,3 are shown in table V.
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TABLE I. - APPROXIMATE ENTRANCE REGION FLOW PROPERTIES
8Point | Relative Relative |®Point|Relative Relative
flow angle, | velocity, flow angle, | velocity,
B, L B') W
deg deg
c -66.4 1.347 c -66.4 1.347
S -67.0 1.337 St -66.0
R -67.3 1.331 R -65.4 to
Q -66.9 1.337 Q' -64.0
A ~67.4 1,331 B -63.4 1.374

8@Points defined on fig. 6.

TABLE II. - COMPARISON OF CHARACTERISTIC SOLUTIONS
AT FOUR GRID POINTS
Grid Grid Characteristic Characteristic
point | property | equetions (19) | equations (19)
and (20), and (20),
first iteration| ,th jieration
2,1 B -59.82° -59.72°
w* 1.4124 1.4150
3,1 B -60.600 -60.54°
w* -1.4009 1.4033
4,3 B -46,56° -46.61°
W* 1.5539 1.5527
9,4 -11.66° -11.65°
W* 1.3864 1.3869

23
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24
TABLE ITI. - INLET CHARACTERISTIC CALCUIATION
z % T, d, 1 e? 1 Straight
2
32’ a2 w*2’ | line
points,
Grid |arbitrar-| figure 4]0.008568| _1 1.509 X (3)|assume
point|ily and (D ® @2 arbitrar-| (@) - e ®
selected ily to
along find
inlet straight
line, AB line
4,0 0.0085 0.04875 | 0.17575 |32.3749 48,8699 0.575 4,2747
.550 5.4965
3,0 0.0155 0.04777 | 0,17936 |31.0849 46,9227 0.575 4,1043
. 550 5.2774
2,0 | 0.0220 0.04690 | 0.,18269 (29.9620| 45.2276 0.525 6.2175
. 950 5.0868
1,0 { 0.0270 0.04618 | 0.18553 [29.0516 43,8534 0.525 6.0286
. 955 4.,9322
0,0 | 0.0318 0.04555 | 0.18810 (28.2632| 42.6633 0.525 5.8650
. 550 4.7984
._l.., w¥, sin B, B, M, K, Ao,
W$2
Grid |inter- | [1 |-1.2286 jsin 1 @0)| ref. 6lsinl 2—,| @ - @,
point{ section @ @ deg
fig. 12 deg deg
5,0 1.3308 -67.,400 | 1.6563
4,0 |0.5571 | 1.3398|-0.91700 | -66,492 1.6731] 36.705 -103.197
3,0 10,5501 | 1,3483|-0,91122 | -65.675 1.6901 36,276 -101,951
2,0 10.5432 | 1.3568|-0.90551 | -64.892 | 1.7070] 35.861 -100.733
1,0 }0.5361 [ 1.3658|~-0.89955 | -64.099 1.7251) 35.428 -99,527
0,0 10.5297 | 1.3740]|-0.89418 | -63,411 | 1.7418 35.038 -98.449

SRS

3

ta
(h
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TABLE IV. - CHARACTERISTIC CALCULATION EQUATIONS (19) AND (20)

~NaT 9 |06 | ® |0 | ®
Grid |Grid B 13
point{point
1 By #y [cot D;jtan @ x@@'@
3 2 B, y jcot @,ften @, @+
4,3 4,2 |-56.,00|31.77|~-0,67450(0.619830 |-0.41772|1.29280
0,3 |-45.98|27.04| -.96636] .51040 | -.49323|-.45596
@ ® © O 6
G, Table V
orid F, column velues x@ @_ Gy
polat| @ | cot tan ®+@ | Fo
® )
@
4,3 |-0.32311]-0.93546| 0.49988 | -0.46762 |1.43534 |-0,32579
1.08174 -.43558 | 1.07356
®@ 2HRECHET @
G - ™
Average, T*
Grid 2
point | D+ @ m @ | m @
3 2
4,3 -0.32445| 0,1368 | 0.03430 | 0.03877 | -3.37260 | -3.25010
1.07765 -03519 -3.34698
€ 65, g.’-e.ble le
Grid column ues
point @2‘@1 @z"‘ @1
P o-0] @025 s
X57.2958 X57.2958
deg B) sd.eg 58,
4,3 |-0.,12250 | 0.03974 -1.93 0.35 32.66|-46,91
-.02562 | =.02761
® 6 @ 6 6o & &
Grid Vs, B3’ M, R:3 Wg, Hz, >‘+31 }\_3:
point a’
3 | @) @ |@ema @

a

X |€Dend

@’ @, ref. 6 ref. 6, @, ,
deg deg deg deg deg
4,3 [30.73|-46.56(2.1615 (0.7185(1.5539 | 27.02 |[-19.54|-73.58

25
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TABLE V. - PLANE-FLOW CHARACTERISTIC CALCULATION
EQUATIONS (21) AND (22)
® | ® ® ®
Grid Grid v B
point | points 32 3
5 1 Yy Py @, +D, | [®, +®,
2 B
vz 2 +<:)2 ‘<:>1] '(:)1 +(:>z ]
+2 + 2
4,3 4,2 23.57 | -56.00 32,66 -46,91
0,3 31.73 | -45.98
®| | O® ©, @
Grid M, a/aa, Wg: Hz» A+3: x_s’
point C) 3 C) 4 () N
3 an an an
ref. 6| ref. 6 @x© ref. 6 ®+" @"’
deg deg
4,3 | 2,236 0,7071 {1.5811 | 26,56 | -20.35 | -73.47

c£lY
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Figure 1. - General stream filament of revolution.

1 = constant

~] -8

® = constant \J\l

Figure 2. - Blade section and characteristic
calculetlng points on mean surface of
revolution.
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Figure 3. - Blade proflle at superscnic impeller tip.
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Figure 4, - Variation of stream-filament thickness with axiael length.
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Figure 5. - Expanslon waves
contalned in blade passage
entrance sectlon.
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Figure 7. - Characteristic petwork at supersonic impeller tip.
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Flgure 10. - Veloclty distributlion on blade surfaces at supersonlic impeller tip.
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Area ratio function, 1/(0.578688 A./A¥)2

<G

Relative velocity function, l/W*z

Flgure 12. - Relative velocity as functlon of area ratio
for relative velocity determination slong inlet line.
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